skip to main content


Search for: All records

Creators/Authors contains: "Moudgil, Karttikay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 {Cp* = η 5 -pentamethylcyclopentadienyl, R = Me, Et} have previously been found to be moderately air stable, yet highly reducing, with estimated D + /0.5D 2 (where D 2 and D + represent the dimer and the corresponding monomeric cation, respectively) redox potentials of ca. −2.0 V vs. FeCp 2 +/0 . These properties have led to their use as n-dopants for organic semiconductors. Use of arenes substituted with π-electron donors is anticipated to lead to even more strongly reducing dimers. [RuCp*(1-(Me 2 N)-3,5-Me 2 C 6 H 3 )] + PF 6 − and [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] + PF 6 − have been synthesized and electrochemically and crystallographically characterized; both exhibit D + /D potentials slightly more cathodic than [RuCp*(1,3,5-R 3 C 6 H 3 )] + . Reduction of [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] + PF 6 − using silica-supported sodium–potassium alloy leads to a mixture of isomers of [RuCp*(1,4-(Me 2 N) 2 C 6 H 4 )] 2 , two of which have been crystallographically characterized. One of these isomers has a similar molecular structure to [RuCp*(1,3,5-Et 3 C 6 H 3 )] 2 ; the central C–C bond is exo , exo , i.e. , on the opposite face of both six-membered rings from the metals. A D + /0.5D 2 potential of −2.4 V is estimated for this exo , exo dimer, more reducing than that of [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 (−2.0 V). This isomer reacts much more rapidly with both air and electron acceptors than [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 due to a much more cathodic D 2 ˙ + /D 2 potential. The other isomer to be crystallographically characterized, along with a third isomer, are both dimerized in an exo , endo fashion, representing the first examples of such dimers. Density functional theory calculations and reactivity studies indicate that the central bonds of these two isomers are weaker than those of the exo , exo isomer, or of [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 , leading to estimated D + /0.5D 2 potentials of −2.5 and −2.6 V vs. FeCp 2 +/0 . At the same time the D 2 ˙ + /D 2 potentials for the exo , endo dimers are anodically shifted relative to those of [RuCp*(1,3,5-R 3 C 6 H 3 )] 2 , resulting in much greater air stability than for the exo , exo isomer. 
    more » « less
  2. This study investigates electron transport and distribution of an organometallic dimer‐based dopant (RuCp*Mes)2 in benchmarked P(NDI2OD‐T2) films, in which electron transport is not affected by deep traps originating from atmospheric contaminants. The electron mobility of P(NDI2OD‐T2) can be enhanced by >10‚ in diodes with reduced thermal activation energy using (RuCp*Mes)2 dopants, which is rationalized by the filling up of tail electronic states by doping induced carriers. n‐doping with (RuCp*Mes)2 can also improve electron injection at Schottky contacts in nanoscale transport measurements confirmed by conducting atomic force microscopy. The results suggest that the (RuCp*Mes)2 dopants are homogenously distributed throughout the P(NDI2OD‐T2) film, at least laterally, at moderate doping concentrations. Thus, these results demonstrate an opportunity of using air‐stable molecular n‐doping to modulate charge transport properties for solution‐processed organic optoelectronic devices.

     
    more » « less